
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 1

Secure Encounter-based Mobile Social
Networks: Requirements, Designs, and

Tradeoffs
Abedelaziz Mohaisen, Denis Foo Kune, Member, IEEE, Eugene Vasserman, Member, IEEE,

Myungsun Kim, and Yongdae Kim, Member, IEEE

F

Abstract—Encounter-based social networks and encounter-based sys-
tems link users who share a location at the same time, as opposed
to the traditional social network paradigm of linking users who have
an offline friendship. This new approach presents challenges that are
fundamentally different from those tackled by previous social network
designs. In this paper, we explore the functional and security require-
ments for these new systems, such as availability, security, and privacy,
and present several design options for building secure encounter-based
social networks. To highlight these challenges we examine one recently
proposed encounter-based social network design and compare it to a
set of idealized security and functionality requirements. We show that
it is vulnerable to several attacks, including impersonation, collusion,
and privacy breaching, even though it was designed specifically for
security. Mindful of the possible pitfalls, we construct a flexible frame-
work for secure encounter-based social networks, which can be used to
construct networks that offer different security, privacy, and availability
guarantees. We describe two example constructions derived from this
framework, and consider each in terms of the ideal requirements. Some
of our new designs fulfill more requirements in terms of system security,
reliability, and privacy than previous work. We also evaluate real-world
performance of one of our designs by implementing a proof-of-concept
iPhone application called MeetUp. Experiments highlight the potential of
our system and hint at the deployability of our designs on a large scale.

Index Terms—Social networks, Location-based services, Privacy.

1 INTRODUCTION

In the conventional model of social networks, users select their
contacts from a set of off-line acquaintances. Despite their
utility, these conventional networks support only a subset of
social networking: two users will only be able to establish
a relationship in the social network if they know of, or are
introduced to each other. On the other hand, in an encounter-
based social network, the only requirement for establishing a

• A. Mohaisen is with Verisign Labs, Reston, VA 20151, USA. Email:
amohaisen@verisign.com

• D. Foo Kune is with the Electrical Engineering and Computer Science
Department, University of Michigan, MI 48109, USA.

• E. Y. Vasserman is with the Department of Computing and Information
Sciences, Kansas State University, Manhattan, KS, 66506.

• M. Kim is with the Information Security Engineering Department, Univer-
sity of Suwon, Suwon, South Korea.

• Y. Kim is with the Electrical Engineering Department, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon, South Korea.

connection is to be in the same place at the same time—similar
to striking up a conversation at a public place. Encounter-based
social networks would provide a computing infrastructure to
allow for creation of varied services such as a “missed connec-
tions” virtual bulletin board, on-the-fly introductions (business
card exchange), or real-time in-person key distribution to
bootstrap secure communication in other systems.

Although at first glance encounter-based systems appear
very similar to existing social networks, they present a dra-
matically different set of challenges, not the least of which
are security and privacy of users and authenticity of the other
party in a conversation. Guarantees that are trivial in traditional
social networks, such as authenticity (ensuring one is com-
municating with the desired person), become open problems
in encounter-based networks. Additionally, requirements like
anonymity—a feature that is not needed in most traditional
online social networks based on prior face-to-face contact—
need to be considered in encounter-based networks. This is
desirable because users would expect information about people
they happen to meet to stay private. Furthermore, since people
do not automatically place their trust in others simply based
on presence in the same location, it is also desirable to reveal
the minimum amount of information required for future secure
communication. Sharing detailed personal information is not
the primary goal of encounter-based networks, but can of
course be easily implemented if both users agree upon the
successful verified encounter.

In this paper we consider fundamental requirements for
encounter-based social networks. We note that in addition
to basic functionality like high availability, scalability, and
robustness to failure, these systems should provide several
security guarantees, including privacy in the form of unlink-
ability of users sharing an encounter, confidentiality of data
exchanged among encounter participants, and authentication
of both users in a two-party conversation. We show that
SMILE [27], a recent state-of-the-art design, fails to meet
a number of these requirements (even though it was built
explicitly with security in mind). We propose a generic design
that can be used to construct networks that provide different
security guarantees. We then describe individual designs and
show the benefits and trade-offs of specific security design

mailto:amohaisen@verisign.com

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 2

decisions.
Unlike prior work, we provide fine-grained separation be-

tween the encounter event and the eventual connection and
communication: authentication and communication may hap-
pen immediately, or may be delayed for an arbitrary period
of time. The former provides unlinkability between the two
paired users (a third party cannot determine that two users have
made a connection), while the latter increases convenience
and flexibility at the cost of somewhat degraded unlinkability.
However, both schemes guarantee authentication—that once
established, the connection is with the desired user. Both
of these designs consist of an “online phase,” where the
encounter takes place and encounter instance information is
exchanged, and an “offline” or delayed communication phase,
where encounter information is used for the two parties to
reconnect and communicate privately. It is worth noting that
we assume that other users at the encounter time and loca-
tion are potentially malicious, and may collect information,
collude with other parties, and otherwise make it difficult
for two people to establish a secure private connection. We
developed a prototype of our design, called MeetUp1, that
uses visual authentication for encounter information exchange
and verification. At the core of our system is a visual au-
thentication scheme that provides authenticity guarantees for
users involved in an encounter. Our authentication scheme
capitalizes on that people are good at remembering faces
but worse at remembering names. Encounter-based networks
with visual authentication would play to people’s strengths,
allowing anyone who remembers a face to later connect with
the “owner” of that face, without the need to remember
additional information. MeetUp uses Tor hidden services [14]
to provide an anonymous communication channel for the
second phase of our protocol. By performing preliminary real-
world experiments using plausible deployment settings, and
considering user feedback, we highlight the end-user usability
of our system and its feasibility for deployment at larger scales.

While the main contribution of this paper is an encounter-
based social network design, our techniques can be employed
for a wide range of applications, such as a drop-in replacement
for a face-to-face key distribution service for future secure
communication, e.g. SPATE [23], or for privacy-preserving file
sharing systems, e.g. OneSwarm [20]. In OneSwarm, untrusted
users get their keys from an online key distribution center.
Using our design, one may distribute keys to untrusted users
based on some shared activity—an encounter. Any application
that requires key pre-distribution, such as storage services,
private file-sharing systems, private collaboration groups, etc,
would benefit from our design in the same way. Another ex-
ample is a scientific meeting, where some researchers present
their work, and others participate in discussions, and no one
has time to introduce themselves to everyone. We can employ
our encounter-based system for private on-the-fly name and
business card distribution—concerte examples are discussed
in §6.4.

Our contributions in this work are as follows. (i) by first
outlining security and functional requirements that are ide-

1. http://www.cs.umn.edu/∼foo/meetup/

ally desired for encounter-based social network and arguing
that these are minimal requirements for many distributed
system with reasonable security and privacy guarantees, we
examine the extent to which SMILE, a recent state-of-the-
art design of secure encounter-based social network, meets
these requirements, showing that it is vulnerable to many
attacks. (ii) we propose a new and generic architecture for
encounter-based social networking that greatly differs from
the architecture of previously proposed systems and suggest
two possible implementations, each striking a balance between
performance and security. (iii) we show the feasibility of
our designs by implementing a proof-of-concept system—
including an iPhone application called MeetUp—conforming
to our requirements and evaluating its performance in real-
world settings using mobile devices, and by bringing further
evidence on the usability of our design and rationality of used
assumptions based on several user studies.

The organization of this work is as follows. In §2 we de-
scribe idealized security and functional requirements expected
in encounter-based networks. In §3 we discuss some of the
related work in the literature, followed by a discussion of
vulnerabilities of SMILE. In §4 we introduce the design of a
generic encounter-based social network and discuss two spe-
cific designs. In §5 we discuss the implementation of MeetUp,
and details of some of the experiments that we performed to
illustrate the usability of our design. In §6 we highlight the
main discussion points followed by concluding remarks in §7.

2 REQUIREMENTS AND CHALLENGES
As we have mentioned in §1, many encounter-based designs
do not consider even basic security and privacy requirements
along with functionality and performance. Others fail to meet
these requirements even though they were created with the
explicit goal of satisfying them. Below, we explore some
requirements for idealized secure encounter-based social net-
works. While this list is by no means complete, it can be used
as a preliminary guide for evaluating past and future designs.

2.1 Security Requirements
Here we outline some of the desired security features of
encounter-based social networks. Note that these requirements
are generic in the sense that they may apply to many dis-
tributed systems which combine human interaction, sensitive
private information, and network communication. The security
requirements we expect in these systems are as follows.
(i) privacy or unlinkability. The privacy of two parties sharing
an encounter must be protected, even from others in the
vicinity who may also participate in simultaneous encounters.
In this case, privacy means that an external adversary (even
one taking part in the encounter or colluding with a “bulletin
board” or rendezvous server to be used in latter phase) who
is not one of the two users of interest should not be able to
conclusively determine that two users have made a connection.
(ii) authenticity, meaning that when two users decide to make
a connection, they should be assured that messages indeed
originate from each other. (iii) confidentiality, meaning that
information exchanged between two users should be accessible
only to them.

http://www.cs.umn.edu/~foo/meetup/

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 3

2.2 Functional Requirements
The following are generic functional requirements in the con-
text of large-scale distributed systems that are also desirable
for an encounter-based social network. (i) availability. As
such, the infrastructure to exchange encounter information
should be accessible most of the time. The unavailability of
individual users should not affect the availability of other
users. Since the time at which encounter parties check for
potential encounters associated with their activities could be
arbitrary, the encounter-based social network is more sensitive
to availability than conventional social networks. (ii) scal-
ability. With typical social networks being large in size,
any potential social network design, including those based
on encounters, should scale to support a large number of
simultaneous users. This requires minimizing dependence on
a centralized entity (our rendezvous server mentioned above).

3 BACKGROUND AND RELATED WORK

While it may appear that implementing these requirements
would be straightforward, it is surprisingly challenging in
practice. Recently, Manweiler et al. devised SMILE [27]
to implement a subset of these requirements. While they
succeed in meeting some of the functional requirements, their
system does not protect against a number of common security
vulnerabilities, such as the “man-in-the-middle” (or MitM)
attack, which leads to several other breaches as shown below.

Closely related to our work, as well as to SMILE, are
GAnGS [9] and SPATE [23], which are both systems built to
facilitate secure data exchange among groups in an authentic
manner using simple human factor techniques. GAnGS ex-
tends demonstrative identification (DI) to a group setting. The
original allows users to indicate which two devices should
communicate at a time, and is by nature designed for pairwise
grouping. The basic idea of GAnGS is to use device pairing in
an efficient manner for groups by using auxiliary tools such as
projectors for inputting information about the group (GAnGS-
P) or by depending on other users in the group to perform tree-
based pairing (GAnGS-T). Unlike our work, while GAnGS
can be used for encounter-based attestation, it is mainly
designed for collaborative data authentication. SPATE [23]
improves on GAnGS by streamlining cryptographic operations
to make the system more usable on mobile devices. Neither
work considers privacy or anonymity of participants, since
authentication and collaboration are done at the same phase,
and any potential attacker can maintain participants in both
designs easily by eavesdropping on communication taking
place between them. Related to both works, although with
slightly different applications, is SafeSlinger [17]. SafeSlinger
emphasize usability when creating trust among participants in
communication and on-the-fly collaboration settings.

Since location is one of the most frequently used pieces
of information for encounter verification, location proofs are
studied in [32] and [21]. Some commercial platforms that uti-
lize the idea of short-range communication and location-based
services include Brightkite [7] and Loopt [24] while other
similar ideas can be seen in WhozThat [5], Serendipity [16],
SocialAware [18], Veneta [34], D-book [10], and Bump [8]

(an application for contact information exchange that provides
no privacy guarantees against a compromised central server;
its security is analyzed and improved in [33]), among many
others.2 Most of these works do not consider location privacy,
despite of its importance.

Last system worth mentioning is MobiClique [30], which
builds an ad-hoc on-the-fly mobile social network by boot-
strapping initial contacts from online (static) social network.
As in our work, users in MobiClique use short-range Bluetooth
communication and can establish encounter-based social links.
Most interestingly, MobiClique provides several measurements
demonstrating the feasibility of such system in terms of power
consumption on typical mobile devices, as the one used in
our design. However, unlike our system, MobiClique does not
guarantee nor address user privacy.
I Overview of SMILE. The main work in the literature
that is similar to our work in goals and purpose is SMILE.
SMILE extends ideas from [26] to establish trust between
individuals who shared an encounter. It attempts to allow users
equipped with mobile devices to build such trust relation-
ships while preserving their privacy against potential attackers
(e.g., the rendezvous server and other users in the encounter
settings). In SMILE, users who want to communicate with
each other must prove that an encounter occurred between
them. To do this, the first device in the encounter generates
and broadcasts the “encounter key” to other devices within
its communication range. The same device then posts a
cryptographically-secure hash of the encounter key, along with
a message encrypted using the encounter key to a centralized
server. Due to the pre-image resistance properties of the hash
function, the centralized server cannot recover the encounter
key without help, and thus cannot read the message. Other
users of SMILE with the same encounter key may claim the
encounter by looking up the hash of the key, which is used for
indexing the encrypted message at the centralized server. Only
users with the correct key will be able to decrypt the message
left by the first encounter party at the server, and every user
with the correct key can derive the retrieval hash value. The
benefits of the basic design of SMILE as it is described here is
that it reduces the misuse in the encounter system: only people
who have been at the encounter place are those who know the
encounter credentials and are able to claim the encounter.

In addition to the basic design, SMILE tries to provide
two features: k-anonymity and decentralization. k-anonymity
is achieved by truncating the hash values of the keys so that a
single user is concealed amongst k other users with the same
truncated value. SMILE features a decentralized system that
uses anonymizing networks of re-mailers for communication,
claiming to provide k-anonymity by requiring each user to
have at least k identifiers.
I Requirements met by SMILE. We now examine which
of the previously-derived requirements SMILE meets. The
system’s availability and scalability are limited, since the
system depends on a centralized server that is easy to disrupt—
a problem that is not unique to SMILE, but rather any

2. Note that some of these applications give the impression of short-range
communication but actually communicate over the Internet.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 4

design that uses a centralized online entity. Additionally, the
claimed security guarantees might not meet the requirements
outlined above. While the confidentiality of encounter-related
information is safeguarded by encryption, the privacy of users
in SMILE can be breached. In principle, while the problem
exists in systems that rely on a centralized server, one can
augment the performance of SMILE and mitigate the problem
by providing a server with high availability guarantees, which
comes at cost that need to be considered as part of the design.

First, SMILE is prone to an impersonation attack performed
by a user present during the encounter. Since no authentication
is done during key agreement, any user can eavesdrop on
the encounter information and later claim to be the party of
interest. This attack can further be extended to monitoring:
if the adversary exchanges keys with the first user pretend-
ing to be the second, and repeats this with the other user,
the adversary can carry out a MitM attack and monitor all
messages passed between users. Second, SMILE is prone
to user collusion, an attack that was previously reported in
social interactions [25]; a few malicious users colluding with
the rendezvous server may possess enough information about
activities of other honest users (such as timestamps, locations
information, and encounter keys) for the server to unmask
users, determining the identities of communicating parties.
Finally, while not particularly a specific problem of SMILE
but every system using such a building block, the k-anonymity
in SMILE requires that each user know the number of other
nearby SMILE users in order to make sure that there are
enough people around to mask the activity of an individual—
that the user is indistinguishable from k others in a given
encounter setting. This, however, can be easily misrepresented
by a Sybil attack [15] where a single adversary pretends to
be k − 1 other SMILE users, compromising honest user’s
anonymity.
I A comparison with SMILE. While we take a different

approach than that used by SMILE, and any comparison
between our approach and that of SMILE might turn unfair, we
conclude this section with the main differences in guarantees
and functionality of our design and that of SMILE. First of all,
our design is scalable by nature, particular when considering
the design option of using hidden services where users run
their own servers for post-encounter communications. Second,
our design provides stronger authentication features, by visual
means, thus preventing the MitM attack, whereas SMILE does
not provide these features. On the down side, the use of visual
means for authentication is not universally accepted—see our
user studies in section 6— and might have a privacy cost
associated with it, while SMILE does not use such feature
although at the risk of enabling the MitM attack. Finally, our
designs, centralized or decentralized, provide better guarantees
for the post-encounter phase by using a mix network to access
encounter information, thus reducing the risk of giving away
additional information to the potential adversary (impersonator
or centralized server) by concealing networking information
of users. While this feature can be added easily to SMILE,
the fact that weaker authentication is used in it would still
enable a variety of attacks the adversary can perform—e.g.,
collusion. In our design, impersonation is hard to launch, since

it requires colluding with the centralized signing authority,
while SMILE does not make use of such authority thus having
the advantage of being lighter-weight than our design, but
enabling the collusion in its attack surface.

4 DESIGNS AND DESIGN OPTIONS

With requirements outlined earlier, we generalize the design
of previous systems. Special attention has been given to the
security and privacy requirements previous designs failed to
achieve. We divide the design into functional blocks and
describe potential attacks on various parts of the system. Then,
we discuss two instantiations of the generic design; each with
different benefits and trade-offs.

4.1 Functional Components
The functional design of a typical encounter-based social
network consists of three major components located at three
different architectural layers, as shown in Fig. 1: user layer,
plug-in layer, and “cloud.” The term cloud may refer to a
storage location of the encounters and private messages (e.g. a
central rendezvous server or distributed “mini-servers”) which
is used by different encounter parties in the post-encounter
phase. However, the design can be quite flexible, allowing
storage components to be dynamically chosen using a plug-
in architecture: the system may support centralized servers,
distributed hash tables [28], or even Tor hidden services [14].
Notice that each of the different layers provides functionalities
used to realize one or more functional or security requirement
among these explained in §2. Furthermore, to establish a
balance between the functional and security requirements, we
also discuss two specific designs in the next subsection. Below,
we elaborate on what requirements each designs meet.

4.1.1 On the Need for Strong Authentication
We have shown in section 3 that simple unauthenticated key
agreement during the encounter is vulnerable to a man-in-the-
middle attack. Given that the parties involved in the encounter
are already aware of each other visually, the only way to avoid
this vulnerability is to enforce a visual authentication scheme
where users can recognize that they are communicating with
the desired party simply by looking at a picture of that
user. In other settings such as a professional conference, a
company logo and other information, which could be viewed
as a reduced digital version of a business card (though, in
many cases, the same scenario of using a personal photo on a
personal business card still applies). To provide user authenti-
cation, we assume each user to have a digital certificate signed
by a trusted authority with sufficient information to identify
users, including a photo of the user. The signing authority’s
public key would be known to all other nodes who use our
encounter-based social network. It is not far-fetched to assume
that future authentication tokens such as passports and driver
licenses will be issued digitally, since cryptographic signatures
make them more secure against malicious tampering than their
physical counterparts. Though, we do not use such certificate
but a limited one (see details in below). With that assumption,
a user of an encounter-based system broadcasts a certificate

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 5

Posting

Retrieval

A’s

Hidden Service

Tor

Encounter

Establishment

g

“Direct

Connection”

Mobile

Device A

Mobile

Device B

Tor

(a) Hidden service-based design

Retrieval

Public

Repository

TorTor

Posting

Encounter

Establishment

Mobile

Device A

Mobile

Device B

(b) Repository-based design

Fig. 1. Two specific designs. Fig. (a) illustrates the first
design using Tor hidden services as encounter storage
place. Fig. (b) illustrates the second design where users
store encounter information on a public replica and gain
anonymity to their access using a normal Tor operation.

with his or her picture and public key which is received by
other people in the encounter space including the intended
destination. Such information is then used for reconnection
according to one of the design options explained in §4.2.

We note that facial recognition algorithms exist, which
might reduce the privacy of the user, when an attacker collects
photos from certificates being exchanged and compare them
to photos associated with names and obtained from other
sources such as other online social networks [2]. Although
these attacks are computationally expensive, one may argue
that the use of cheap cloud services may make these attacks
very feasible. However, we answer this concern by pointing
out three issues. First, even when using such cloud service,
the attack, unless targeted towards a particular user, would
be infeasible with a substantial cost that the attacker has to
pay in order to breach the privacy of users who use our
system. Second, the attacker does not need to collect broadcast
certificates in order to apply the attack, but may simply take
pictures of the encounter space and achieve a similar result
to prove the presence of an individual at a certain place at
a certain time. Finally, all prior work of facial recognition
depends greatly on features extracted from original photos,
but not from cartoon versions of them, which could be used
to remedy the privacy breach associated with using a photo for
visual authentication. 3 Our user study that considers cartoon
version of photos instead of the original photos indeed hints
on improved usability of our design.

3. Indeed, one possible remedy to this attack is to use cartoon version
photos, like the widely accepted and used photos in StreetPass and Mii.

4.1.2 Trusted Certification

In our design, we use the X.509 standard [12] for certification
without any modification to the structure of the certificate, but
we limit the attributes available in the certificate used for en-
counters (discussed below) in order to preserve the privacy of
our users. Indeed, the X.509 standard allows optional attributes
for biometric information such as photos, which enables us
to embed visual information into the certificate. The trusted
authority mentioned previously is responsible for ensuring
that the photo provided by user for certification is an actual
representative picture, and allows others to visually identify
the user. So, even when issuing a certificate that combines
multiple pieces of private information, such as the certificate
owner name and address, the authority will issue a separate,
limited certificate with reduced amounts of private information
which fits our social encounters design (only user’s public key
and photo). The ultimate signature by the trusted authority will
sign all embedded attributes in the certificate, including the
photo. Notice that the centralized authority used for signing
the certificate with the photo does not need to be online for the
protocol to work. Indeed, after the initialization phase of the
protocol, in which certificates are issued for the participating
parties in our design, verification of the signatures embedded
in the certificate are verified at the side of the receiving party
of the certificates using a publicly known public key of the
authority. On the other hand, this guarantee comes at a cost
that is not used in SMILE. Indeed, SMILE is lightweight since
it does not require a certification entity, yet the certification
entity provides stronger guarantees for the authenticity of
participants. More details on the rationale of using such entity
are provided below.

Our certification and visual authentication schemes are very
simple. First, a user Alice generates a pair of public and
secret keys (PK,SK), computes the hash value of her own
image and other relevant information, including a Tor hidden
service URI, which is a unique identifier that is used later
by Bob to communicate with Alice over Tor hidden service.
Alice embeds her PK and other metadata into a certificate
request, and sends it to a signing authority. Second, the signing
authority checks the validity of the metadata hashes in the
certificate request and verifies the validity of the used attributes
in relation with the previously mentioned extended certificate.
If the verification process is successful, the signing authority
signs the certificate using its own private key and sends it back
to Alice. If at any time through the verification process any of
the above conditions do not hold, the signing authority aborts
and refuses to sign. Notice that here we omit some critical
details: the authority only signs the certificate with the photo
only if correctness of the photo associated with the physical
identity of Alice can be established, e.g. by physical presence
of Alice at the authority.

At the protocol’s run time, Alice broadcasts her certificate
to everyone in the vicinity, along with the photo as credentials,
which will later allow anyone present in the encounter space
claim an encounter with Alice and proceed to the next phase
depending on the protocol being used. In one of such design
options — let Bob be one of the people to overhear the

http://en.wikipedia.org/wiki/Nintendo_3DS#StreetPass_and_SpotPass_Mode
http://en.wikipedia.org/wiki/Mii#Nintendo_3DS

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 6

Alice Bob Eve1 Eve2Alice Bob Eve1 Eve2

*
Broadcast

CertAlice + photo

Broadcast

EPK Ali (Key)
()

Generate

Key
EPK Alice(Key)

*
Broadcast

EPK Alice(Key)

Neither Eve1 nor Eve2

can recover the keyTor

Ekey(Hello)

Query y

Rendezvous

Point Ekey(Hello)

Q y

(a) Immediate key exchange

Alice Bob Eve1 Eve2Alice Bob Eve1 Eve2

*
CertAlice + photo CertAlice + photo

Broadcast

*
CertBob + photoCertBob + photo

Broadcast

Tor

EPK Alice(Key)Query(Bob)

Tor

Rendezvous

PointEPK Alice(Key)

Ekey(Hello)

(b) Delayed key exchange

Fig. 2. Sequence diagrams of our encounter-based social network design with two key exchange scenarios: (a) shows
the immediate key exchange with postponed authentication and encounter reconnection via the Tor network, while (b)
shows delayed key exchange and delayed rendezvous via Tor network (hidden service or direct Tor connections).

broadcast, if the photo passes the visual authentication by Bob,
Bob tries to verify if the certificate along with the photo are
genuine, i.e. have a valid signature from a trusted authority.
Bob computes the hash of the photo and other information sent
by Alice, comparing it to the value embedded in the certificate.
Assuming a match, Bob proceeds to verify the signature on the
certificate by using the public key of the signing authority. If
the signature is valid, then Bob admits Alice to be whoever she
claims. Otherwise, Bob aborts. Notice that this authentication
process can be deferred to post-encounter phase, as it is the
case in delayed rendezvous.

4.2 Design Options
In the generic schemes outlined in §4.1 we face two potential
choices: do we require an immediate encounter key agreement
between the two parties, or do we wait? Each approach has a
benefit and drawback. Immediate generation of an encounter
key requires manual selection of the target user while still at
the encounter point. Delayed generation, on the other hand,
requires no immediate action on the part of the user, but
potentially erodes user privacy during later communication.
Both of these methods are discussed further below. Note that
these are not options to be selected within a single system; this
choice must be made before deployment to have a consistent
protocol among all users in the network.

4.2.1 Immediate Pairing
If a user is willing to manually select the picture of other
users of interest while still at the encounter site, she can
compose an encounter key, encrypt it to the selected user’s
public key, and broadcast the resulting message. Each user in
the vicinity will detect the transmission and attempt to decrypt
it. However, only the target user will be able to decrypt the
message correctly, and thus recover the encounter key. This
key will be used later to exchange private messages at the
rendezvous point. This method prevents the rendezvous server

and colluding adversaries from determining which two users
are communicating. We can go a step further and use timed-
release encryption [31] to hide the contents of the message
even from its intended recipient until the encounter is over,
ensuring that users do not inadvertently give themselves away
by using their devices at the same time. In principle, time-
release encryption would allow A sequence diagram showing
the operation of this key generation design is in Fig. 2(a).

While the advantage of this design option is enabling
users to make decisions while at the encounter space—while
they remember well parties they encountered, enabling direct
communication, and utilization of the physical encounter,
reasoning about some security guarantees in this scenario
might not be as easy. Particularly, unconventional attacker
capable of measuring signal strength, and associating that to
users might be able to breach the privacy of users by matching
who meets whom by monitoring the encrypted traffic between
them, thus violating the unlinkability requirement.

4.2.2 Delayed Rendezvous
Devices will consistently broadcast their certificates, but will
not require others users to immediately review the information.
(As in the immediate pairing scheme, we can use timed-release
encryption [31] to enforce this constraint.) At a later time,
the device user can look at the list of collected identities
(and public keys) and select those with whom he wishes to
communicate. As before, we will use non-malleable encryp-
tion to compose a message to the other user, but now the
message must be stored “in the cloud” in such a way that
it is linkable to the public key of the user for whom it is
intended, and some encounter nonce passed at the time of the
encounter. This may not be a significant problem, considering
that only keys and faces are exposed, and not more personal
components of users’ identities. A sequence diagram showing
the operation of the two key generation design options is
shown in Fig. 2(b). While this scheme does not suffer from the

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 7

shortcomings in the immediate pairing scheme, the capability
of reconnecting to encounter parties depends entirely on the
capability of encounter parties to recall such encounters. We
believe remembering people is quite easy, given the limited
number of encounters per time window.

4.2.3 Decentralization and Anonymity
Our distributed design, one that does not require a rendezvous
server, is depicted in Fig. 1(a). We use the generic design
described in §4.1 combined with Tor hidden services [14] to
provide communication anonymity. While Tor provides users
with anonymity, Tor hidden services enable servers to conceal
their identities as well. Each user runs his own Tor hidden
service and uses it for two purposes: first, to hide his identity
and gain anonymity as to his location and second, to serve
follow-up requests relating to previously encounters. The other
party must use the Tor client to access the hidden service, also
gaining anonymity and hiding her location from the server.
This design can easily scale to a large number of simultaneous
users [22], and is resilient to failure, since an attack on the
entire social network built using this distributed design would
require attacking many individual nodes simultaneously (i.e.
the failure of one hidden service would not affect other hidden
services).

4.2.4 Centralized Design with Anonymity Guarantees
Our second design is depicted in Fig. 1(b). Here we assume
a public repository to which users involved in the encounter
can post encounter information. Suppose that Alice shares a
public space with Bob, and therefore learns his public key from
his certificate. At an arbitrary time after Alice and Bob share
a location, Alice can go through all her collected identities,
notice Bob’s picture, and decide to strike up a conversation.
She composes a message to Bob, encrypts it under Bob’s
public key, and posts the encrypted message on the centralized
repository under Bob’s public key. To gain anonymity as to
her identity and location, Alice uses a Tor client, concealing
her IP address from the central server. This is more efficient
than the hidden services used in the previous protocol, which
require one of the encounter parties to be online all the time
to serve other parties involved in the encounter. In this design,
on the other hand, Bob can get the messages left for him at
the central repository at any time. He similarly accesses the
repository through Tor to conceal his identity, and downloads
all messages addressed to him. To identify such messages,
we suggest using nonces as part of the indexing scheme.
These random one-time values, generated and exchanged at
runtime of the encounter protocol, along with the public key
of the encounter party that initiates the encounter, are hashed
and used for indexing. By doing so, a malicious repository
will not be able to get any information about the identity
of the person accessing the repository unless at least one
person at the encounter site is malicious and colluding with the
repository. Notice that the use of Tor here is not to preserve
the privacy of the participants from an adversary present at
the encounter, but from the storage server himself. The use of
Tor conceals the participants IP address, and thus location, and
disable breaching privacy by associating participants with such

information. It is noted, however, that such collusion with the
server is not possible when using Tor’s hidden services, since
each participant acts as his own server; although this option
comes at some cost by requiring participants to be online

5 IMPLEMENTATION AND EXPERIMENTS

To validate our method and assess the practicality of our
design, we implemented the system on the iPhone platform
and tested it on multiple devices under ideal conditions, as well
as conditions that users are likely to encounter in urban set-
tings. In our implementation, we used the delayed rendezvous
scheme where the user’s device can collect simulated broadcast
information during encounters and then use the decentralized
Tor hidden service architecture for the second part of the
encounter. Those require a hidden service URI (an address
through which one can access services deployed by hidden
servers [14]) to be part of the user’s information and is thus
linked with the certificate as a bundle in sent the transmissions.

Notice that, even when an adversary captures the certificate
exchanged between two honest participants, and get access to
the URI, the honest participant running the hidden service will
still have a full control over whether to respond to requests for
communication sent via the hidden service. Accordingly, while
the use of the hidden service would resolve the rendezvous
problem and provide means for reconnection in the future
based on the previous encounter, it will not increase the attack
surface by enabling means for the adversary to breach the
privacy of the users and their encounter.

Finally, notice that our design is generic. We are not
limited to any specific platform like Apple’s iOS, which we
chose for development, in any of the our design ingredients.
Our choice of development platform for our proof-of-concept
application is only due to availability and ease of use for quick
prototyping. Other platforms, such as Android, would work
just as well. Consequently, any conclusions on the usability of
our design are independent of the platform, as we only require
a smart phone with basic wireless capabilities.

5.1 MeetUp: An iPhone Application
Our iPhone application, called “MeetUp,” allows users to
find other users of the system within Bluetooth range, decide
with whom they wish to communicate, and send and receive
private messages. Screenshots of typical usage scenarios are
shown in Figures 3(a) through 3(c). The user searches for other
nearby users of our system, and receives their identification
information, including photographs and certificates signed by
our trusted certificate authority.

5.1.1 Certification and Visual Authentication
The certificate authority uses a scaled-down version of the
architecture presented in section 4. Certificates signed by the
authority include hashes of photos and Tor hidden service
URI unique to the user. The file containing the certificate,
the photo, the hidden service URI, and the signature are the
deployed to each device in the system. The certificate authority
is responsible for verifying that only one instance of such file is
deployed per user. It is also responsible for verifying that the

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 8

photo matches the user. This is similar to machine-readable
biometric authentication used in modern passports [13]. A
larger deployment of our system could rely on an already-
implemented certificate infrastructures that use photographs,
such as a driver’s license records, as discussed in §4.1.

5.1.2 Wireless Communication

Inter-device communication was implemented using Blue-
tooth [6]. The limited range of Bluetooth devices ensures
that users are within close physical proximity to exchange
certificates. This makes it more likely that users are within
visual range and can identify each other. For the delayed key
exchange, we rely on the fact that humans can easily recognize
a face that has been seen before [19] when we present multiple
devices that have been observed previously, along with photos
relevant to the owners.

Our next step was to implement the broadcast protocol
over Bluetooth. Unfortunately, the Bluetooth specification does
not explicitly support broadcast in the way we require. One
broadcast scheme allowed by the Bluetooth standard is over
a piconet [6] in which a small number of devices within
radio range can form a temporary ad-hoc network. Broadcast
communications then take place over those small networks.
Unfortunately, the Apple SDK does not support piconets in
iOS 4.1 [4] at the time of writing of this paper. The only
option on the iPhone platform was to use Bluetooth peer
communication, using repeated unicast to emulate broadcast.
It has a major drawback since both parties in a peer session
will have to acknowledge each other’s devices before any
information exchanges can take place. This will obviously
cause problems for the delayed message setting, but in our case
it was sufficient to obtain some RF measurements data for our
experiments. Fortunately, since we strictly emulate broadcast,
this forced implementation choice does not violate our security
guarantees. Bluetooth sniffers and strength indicators might
be able to help in localizing a transmitting device, but that
information is already assumed to be public. As for the
recipient, if a user connects to every other device in the vicinity
one by one in random order and exchanges equal amounts
of data with all of them, an adversary cannot determine the
intended recipient.

Notice that the Android platform enables broadcast [1], and
a potential final product of our design could be realized on the
Android platform—although, as mentioned earlier, the main
determining factor for using the iOS platform at the time
of writing this work was the availability of iOS devices to
develop the application and to test the design. Recall that
changing the platform will have no impact on the validity
of the rest of the results, particularly the user studies, since
recent independent studies have shown that the Android OS
is taking dominance as it is used on 52% of the smart phones
in the US, as opposed to 35% for the iOS [11]. A deployment
on an Android device would require a single message for a
single broadcast, instead of the simulated scenario described
above which is necessitated for demonstrating the basic idea
with existing equipments.

(a) Searching (b) Users found (c) User details

Fig. 3. iPhone App implementation screenshots

5.2 Using MeetUp
The first step in using our application is for the user to start
scanning for devices within Bluetooth range. The applications
on remote phones have to be listening as well to start a
Bluetooth peer session. Once the session is established, the two
devices can exchange certificates, photos, and signatures. With
this method, however, the initiating device has to go through
the list of nearby devices and do an individual pairing with
each remote device in turn instead of doing a real broadcast,
adding considerable overhead.

In the following measurements, we considered the time
required to transfer a 20KB bundle between two paired de-
vices. We discounted the pairing time since it was a step
necessary only to our emulated network. In a real broadcast,
there will be no pairing time. We did not have access to the
proper equipment (such as a spectrum analyzer) to actually
measure the amount of traffic on the 2.4GHz band, so we chose
locations with minimal RF interference and densely populated
areas around the campus with a heavily utilized 2.4GHz band
for urban setting.

5.2.1 Effective Range
We used an open field in a sparsely populated area to obtain
ideal condition measurements. Such an environment ensures
minimal interference over the 2.4GHz Bluetooth communica-
tion band and minimal multi-path due to signal reflecting off of
objects around the communicating devices. Our experiments
indicate that under those conditions, the devices can discover
each other and exchange information at a range up to 24
meters. Transfer times increased as we increased the distance
between the two devices, but all were faster than 400ms
(shown in Figure 4). We also looked at the directionality of
the communication to determine if users have to be pointing
their devices in a particular direction to ensure timely transfer
of information. We measured the time required to transfer
20KB of data over our Bluetooth channel from a user holding
a device in a particular manner. Measurements were taken
at 45◦ increment by a querying device moving around a
responding device. The experiment was repeated for radii of
1, 2, 3 and 4 meters around the responding device. We did
not find any significant transfer time differences for all of our
measurements. The median transfer time was approximately
250ms for the 20KB payload (results are shown in Figure 5).

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 9

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25

D
e

la
y
 (

s
e

c
o
n

d
s
)

Distance (meter)

Fig. 4. Delay as the time it takes to send encounter in-
formation (about 20KB) and receive it by other encounter
parties with variable distance without obstacles.

 0.2

 0.25

 0.3

 0.35

 0.4

0 45 90 135 180 225 270 315

D
e

la
y
 (

s
e
c
o

n
d

s
)

Angle (degrees)

r = 1 m
r = 2 m

r = 3 m
r = 4 m

Fig. 5. Delay with different locations of the encounter
sender and receiver, as determined by a radius r (in me-
ters) and an angle θ (0 to 325 with 45 degrees increment).

5.2.2 Effective Range with Obstacles
We consider the time taken to transfer and receive encounter
information between two encounter devices under several
conditions reflecting real-world deployment settings, where
obstacles around the encounter parties may cause signal
attenuation and multi-path interference. We consider five
communication scenarios of interest: (i) through a barrier
(door), (ii) in hallway—line of sight with a separation of 20
meters, (iii) communication across multiple walls, (iv) while
on different floors (2 floors separation), and (v) when one of
the parties is in an elevator and the other is outside it. For each
scenario, ten measurements are taken and the results are shown
in Figure 6, where we plot the 5 representative values of min,
max, median, Q1 and Q3 (lower and upper quartiles). While
some scenarios imposed far greater delay than others, the data
generally shows feasibility of MeetUp in several potential
deployment settings.

5.2.3 Measurements in Urban Settings
We tested MeetUp in a densely-populated urban setting, in
a bus station populated by students equipped with mobile
phones, with this being as the only difference from the range
and obstacles experiments above. The data collected from this
experiment are shown in Figure 7. We observe that it takes less
than a second in all cases to do the encounter, and at average it

1 2 3 4 5

2
0
0

2
5
0

3
0
0

3
5
0

Experiment

D
e
la

y
 (

m
ill

is
e
c
o
n
d
s
)

Fig. 6. Delay with several scenarios representing different
potential deployment settings of MeetUp.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
m

p
ir
ic

a
l
C

D
F

Delay (seconds)

Fig. 7. Delay as the time it takes to send encounter
information (certificate and data in a 20KB bundle) and
receive it by other encounter parties in urban settings

takes approximately 600 ms. While larger than an environment
free of obstacles, multi-path and interference, the transfers
were still completed in an acceptable time window, thus
supporting the practicality of our design. For this experiment,
only two users participated in the experiments where one is
the initiator of the encounter and the other is the receiver. The
results shown in Figure 7 correspond to roughly 100 readings.

5.2.4 Tor Hidden Service

Following the device encounter and data transfer over the
wireless network, we used a Tor hidden service for the second
phase of the anonymous encounter. We transfered a 40KB data
bundle that only the intended recipient will be able to decrypt.
We established a new Tor circuit for each experiments, and
we ran multiple timing measurements per experiment. The
timings tend to be very consistent per circuit but very different
between circuits (ranging from 1.5 to about 8.5 seconds).
Most circuits we used showed an acceptable transfer delay
of under 10 seconds. Notice that the Tor hidden service does
not increase the attack surface, but rather hides the users’
additional network information, such as IP address, while
enabling the rendezvous in a decentralized fashion.

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 10

5.2.5 Technical Issues

During our tests we noticed that a number of users tend
to use their real names as their device’s names due to the
default naming scheme used by the mobile device. The device
name (which in many cases contains the user’s name) is
transmitted to other devices during the Apple iOS Bluetooth
pairing protocol. Such a naming scheme would defeat the
purpose of the anonymity provided by the protocols outlined
in this paper. In future implementations we intend to use the
time of encounter as a selector, instead of a device nickname.
From a user’s point of view, the appropriate photos will
be displayed next to the time of encounter allowing proper
selection. The list can also be augmented with locations at
which the encounter occurred.

In our implementation, we exported the certificate from the
device to a desktop which then created a rendezvous point over
Tor. There is also an option to have the device itself connect
to the Tor network to set up a rendezvous point. At the time of
writing this paper, the iPhone Tor client required a jailbroken
iPhone, limiting its utility. Depending on the policies of
the iTunes store, we may be able to include a Tor client
component within our application, or rely on a connection
to a desktop computer to establish the rendezvous point and
wait for incoming connections. Other future implementations
of MeetUp would consider other potential mobile devices
that already support Tor, e.g., Android platforms [3]. Notice
that if one is to consider the iPhone platform to serve as the
platform of MeetUp, one only needs to give up the option of
running hidden services over the iPhone while other options
are, including running hidden services on a desktop, would be
still available and are independent of the platform.

6 EVALUATION AND DISCUSSION

6.1 Privacy Evaluation

6.1.1 Privacy in the Encounter Phase

In the first phase of the encounter (when users are still in the
same location), the first party—referred to as the encounter
source—uses a broadcast communication channel that makes
the second party of the encounter—which we refer to as the
encounter destination—unlinkable to the source. Information
broadcast by the source is received by every other party in the
encounter space, and no destination information is revealed.
The only information revealed about the source is her public
key and photo. We discuss the privacy implications of this
setup below. However, it is clear that while an adversary
present at the encounter can determine who else is present
and using MeetUp, the adversary cannot determine if any
two users made a connection. In the post-encounter phase and
for the purpose of reconnecting with users who were present
during an encounter, the identity and location of the person
initiating the connection to the rendezvous server or hidden
service are obscured using the Tor network, or Tor hidden
service, though in the latter case is immediately revealed to
the source of the encounter if verified.

6.1.2 Privacy in the Post-Encounter Phase
While it is easy to reason about the second case where a
user runs his own hidden service, since the security of the
communication is inherited from that of the Tor network and
computing entities under the full control of the user, it is more
difficult to determine whether unlinkability holds when using
a centralized rendezvous server. Since encounter information
is deposited on the central server by the destination and is
based on the source’s information (e.g. an index derived from
his public key), this information might be used to breach
the privacy of users — any entity may check the source’s
mailbox to see if there is a message. Note that the message
is encrypted, and therefore still confidential. The problem is
alleviated using encounter-time random nonces, which would
be combined with the destination party identity to derive the
rendezvous key used by the encounter parties.

Only a malicious server colluding with a user in the en-
counter space would be able to extract any information from
the rendezvous key — the server acting alone gets no useful
information. Furthermore, the extracted information is limited
to the time and place of the encounter, and nothing else. The
certificate of the source, if the destination decides to repost
it as an evidence of the encounter, is encrypted under the
source’s public key along with the message left to the source at
the central server. Such information about the source cannot be
linked to any other information, since the server in our designs
does not store such information, unlike the case of SMILE.
Notice that another reason for using per-encounter nonces
generated at encounter time is to optimize the communication
overhead when retrieving the encounter information. A fix for
the colluding server and malicious users mentioned above is to
make each user who wants to retrieve encounter information
posted to him on the server to perform “dummy” queries to
disguise his intended encounter query.

6.1.3 Privacy Concerns due Visual Authentication
One may criticize our design for using a personal photo
associated with the encounter information, which may be
eavesdropped by all users in the encounter setting, including
the attacker. While the photograph-to-key binding may be
abused to degrade the privacy of users, we argue that this is a
necessary piece of information, and a potential attacker might
learn it from several other sources, apart from this application.
We further argue that such information is already available
to the attacker by physically co-locating with the encounter
party, and by seeing who is present at the same place in the
same location. However, we stress that this information cannot
be used to breach the privacy guarantees of the encounter,
since the adversary cannot read messages exchanged between
users, nor does he know the identity of the other party in the
encounter. We finally argue that users interested in maintaining
unlinkability provided in our design for their encounters are
also willing to give this piece of private information away, for
the ultimate benefits gained. This claim is further supported
by several user studies through surveys.

We emphasize again that our scheme requires a visual
authentication to avoid certain security breaches, namely the
MitM attack, while SMILE does not (at some security cost).

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 11

Our goal is to ensure that we are indeed sending messages
to the appropriate party. At the point of a short encounter,
the users do not have any information about the recipient,
except for a visual information, which is driving our require-
ment for visual authentication. This requirement does have a
privacy angle to it, but in the age of public facebook profile
pictures, users are finding it more acceptable to have photos
of themselves available, which is—as pointed out earlier—
already available through other sources. This includes, as an
analogues case to the technique used in our work, having a
video camera running during the train ride and capture a photo
of everyone. More details on the usability associated with this
building component are highlighted in the following.
I Survey settings. To demonstrate the usability of our design,
we perform several user studies as shown in the subsequent
paragraphs. In these user studies we recruited 76 volunteers
with age ranging from 21 to 35 through a Facebook application
designed especially for this study. Invitations to participate in
the survey are made to the sample size from a larger pool of
candidates, of approximately 320 subjects, and each candidate
in the sample is selected from the pool uniformly at random.
The average age of the respondents to the study was 25.7
years old, with 45 of the respondents being males while the
rest being females. Of the responding subjects, 68 had at least
a bachelor’s degree (or were enrolled in a program that leads
to a bachelor’s degree at the time of the survey; about half of
them are enrolled in or had a graduate degree) while the rest
had a two years or less of education post high school. Now
we proceed to describe these user studies in more details.
I User Study 1: Using Photos for Authentication. To
understand the potential of our design in real contexts, we
perform a case study on a random sample of 76 subjects
described above and examined their willingness to use their
personal photos as part of an authentication method in order
to improve their privacy. Out of the 76 subjects, 4 subjects
did not respond (correspond to 5.26% of the sample size).
Thirty six (36) subjects responded positively by agreeing to use
their photos (correspond to 50% of respondents and 47.37%
of the overall sample size) while 22 responded negatively
(correspond to 30.6% of the respondents and 28.95% of the
sample size) and 14 (18.42% of the respondents and 19.4%
of the sample size) selected to turn the feature on at times.
In total, 50 out of 74 respondents (correspond to 69.4%) are
likely to use the feature by providing their personal photos for
certification and authentication when using the service.

We repeat this user study, but at this time by asking the same
subjects whether they would be willing to use our application
if their photos were to be replaced by a cartoon version as a
remedy to privacy concerns. Out of the subjects who negatively
responded in the earlier study, 8 indicated it is likely to turn on
the application at times, while 4 indicated their willingness to
use the application. 10 (correspond to 13% of the population)
responded negatively. In total, 87% are likely to use the feature
by providing their personal photo or a cartoon version of it.

6.2 Overhead and scalability
The overhead required in MeetUp is in the form of com-
munication, computation, and memory. Communication re-

sources are required for transferring and receiving encounter
information, computations are required for establishing Tor
circuits, in normal and hidden-service based operation, and
memory is required for storing the encounter information in
the mobile device and later on a desktop machine that is used
for running the hidden service. While both are considered
for the resources requirements, of interest to our feasibility
study is the mobile device used for carrying out the encounter
operations. Here, we verify the feasibility of MeetUp and its
reasonable consumption of resources.

As we have shown in the previous section, the time it takes
to exchange encounter information in our design is small,
and in most cases is less than 1 second on typical devices.
Furthermore, in many of the deployment environments that we
have considered, this overhead is even about 250 milliseconds,
making it very feasible to use.

The memory required in our design, per encounter, and
shown earlier in §5, is about 20KB. While this is large
in relation with previous memory consumption requirements
for similar designs, such as SMILE, we believe that this is
reasonable for the provided guarantees, and given the amount
of resources in many of the current smart phones which
are equipped with GBs of memory. For example, with a
512MB allocated for the application, one may store up to
more than 25,000 encounters. Given that one has the choice
to decide to store the encounter or discard it right away, this
space of memory can be further utilized to store more useful
encounters. Also, given that the offline communication and
reconnection is performed through non-mobile machines, as
suggested by our design, this memory can be further utilized in
a better way: the memory required on the mobile phone is only
for fresh encounters, which are limited per days [27]. On a
desktop machine, 1GB of memory is enough for storing 50,000
encounters per user, far more than the number of friends one
can realistically have.

The computations in our design are mostly cheap to perform
on typical mobile devices. The only online computations re-
quired in our design is a signature verification in order to verify
the authenticity of certificates issued by the certificate author-
ity. This overhead can be further minimized by considering
verification for encounters that pass the visual authentication,
or can be further moved to non-platform in an offline phase.
This decision, however, may or may not be desirable based on
the traseoff set by users between computations and memory
consumption (as one needs to store all encounters, including
undesirable ones, in order to perform verification offline). In
total, the computation required in our design is reasonable and
feasible for most mobile devices.

On the other hand, offline computations and communication
required for our application are different from those required
on the mobile phone. While memory requirements are still
same, in the offline phase we use Tor, or Tor hidden services,
to provide privacy. By measuring that for the same amount
of communication overhead (20KB), we found the time it
takes to transfer such information over Tor (using previously
established circuit) is about 3 seconds. This further supports
the feasibility claims of our design.

One may argue against the usability of MeetUp, given

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 12

typical smart phones limited batteries which may drain quickly
due to the heavy use of Bluetooth communication. However,
we observe that even when one keeps MeetUp running all
time and scan for encounters every two minutes, typical smart
phone battery would serve for more than eight hours, as it
is shown in [30] with MobiClique, in which the overhead is
comparable to the overhead in MeetUp.

6.3 Usability Issues
Our design assumes the availability of smart phones for users
and their willingness to use their phones to participate in
the system. To understand the density of smart phones and
willingness of people to use them in our application, we
perform the following user study.
I User Study 2: On Using Smart Phones. We examine the
survey outcome on whether subjects are willing to use their
smart phones for applications such as MeetUp or not. In the
same sample, 25% of the questioned subjects did not respond,
implying the likelihood of not having smart phones or not
willing to use their phones for social networks for such appli-
cations as MeetUp. However, 39.47% of the sample (52.6%
of the respondents) answered positively, 28.95% (38.6% of
the respondents) answered negatively, and 6.58% (8.8% of
respondents) answered with “maybe” for the likelihood of
using their smart phones to connect with people they meet.
Out of 57 respondents, 35 (correspond to 61.4%) are likely
to use smart phones for connecting to people they meet in
MeetUp.
I User Study 3: On the Density of Wireless Gadgets. The
typical use case for the MeetUp application is in a social
setting where people congregate. To this end, we chose a
library on the campus of a major North American university.
Since MeetUp runs on the Apple iOS platform, we design
an experiment to estimate the density of devices capable of
running our software in the chosen location. Notice that this
user study does not test whether these devices’ owners are
willing to use our application or not, since this is already tested
in the two previous user studies. Accordingly, the majority
of the devices did not have our application installed. Given
the results of our two previous case studies, one can infer
that the presence of such population of gadgets at anytime
in the suggested deployment scenario would make a sound
conclusion on the usability of our application.

Apple builds a service within their devices that help in zero
configuration situations. For this service, the devices use the
name assigned by the user for communication between devices
on a local network. By default, that name contains the type
of device it is. The first step in this protocol is a Multicast
DNS query on the local network to check for name collisions.
The devices run this protocol by default upon first joining any
Wi-Fi network.

We connected a laptop to the local Wi-Fi network at our
chosen location and listened for Multicast DNS messages. To
ensure that we were limited to the target location, we had a
user with a known device name connect to the same network,
but at different location, and verified our inability to observe
his device’s DNS messages. We estimated the area of the target
location to be around 5000m2.

We collected messages heard on the Wi-Fi network for
5 hours, and filtered the Multicast DNS queries. We then
extracted the unique IEEE MAC addresses of the querying
device from those messages, and eliminated any duplicates.
We verified that all the MAC addresses belong to the IEEE
OUI prefixes assigned to Apple to filter out any devices with
an iOS name, without being one. Those default self-assigned
names identifies the device type as “iPhone”, “iPod” and
“iPad”, allowing us to estimate the iOS device diversity.

To enable a social encounter with mobile devices, it is
important to for those devices to be at the same location at
the same time. Observing Multicast DNS messages tells us
when an iOS device joins the network, but we don’t know
how long it stays. We can make a rough estimate based on
the physical properties of the location. With the radius of our
location being 35m and the average human walking speed of
1.4m/s, we estimate that a user will stay in the network for
at least 25 seconds. Using the Multicast DNS messages, we
can estimate a lower bound for the number of devices coming
online at the above time intervals. In our results shown in
figure 8, we counted the number of devices announcing on the
network within 25 second buckets. We filtered out duplicate
DNS requests, and replies originating from the querier within
the reply timeout window to avoid double counting devices.
On average, we observed about 9 devices joining the network
every 25 seconds. The measurement started around 1pm local
time, which would explain the initial bump in devices, fol-
lowed by a gradual decline into what would be dinner time
locally.

Limitations of our counting technique include the following.
(i) the iPhones have to be configured to connect to the
university’s Wi-Fi network. While not counting all devices,
this is a plausible case since the Wi-Fi data network is much
faster than the 3G network on campus, therefore users have
an incentive to turn Wi-Fi on. (ii) the names of the devices
can be changed to remove the device type. We don’t know the
fraction of user who would do so, but we have at least a lower
bound on the number of Apple iOS device.

Time/mins

N
u

m
b

e
r

o
f

iO
S

 D
e
v
ic

e
s

0 50 100 150 200 250

0
1

0
2

0
3

0
4

0
5

0

Fig. 8. Apple iOS device density estimation

Even with those limitations, we were able to observe 448
unique devices, including 257 iPhones, 129 iPods and 62

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 13

iPads on the network within 5 hours in an area of 5000
m2. Measuring the Multicast DNS messages indicated their
presence on the network, possibly at different points in time
as the device sleeps and wakes up while staying in the same
geographic location. This density of devices provides us with
some confidence that the MeetUpapplication could be useful
in augmenting a social network graph based on geographically
proximate social encounters.

6.4 Additional Applications

Now we turn our attention to further applications. We elab-
orate on applications—mentioned in §1—that may require
anonymity for shared encounters. Among many others, we
discuss two examples.

6.4.1 Key Distribution
Key distribution is a challenging problem in the context of
distributed computing systems. One obstacle for key distribu-
tion is the fact that it is hard to make an authority always
online to take care of the distribution of keys, as well as the
scalability issue of key distribution for larger networks. Our
proposed design can be utilized for key distribution, and can be
used as a plug-and-play service for this purpose. For example,
consider the application of OneSwarm in [20]. In OneSwarm,
there are two classes of users, trusted and untrusted users, and
both are used for different purposes and differ in the way they
get keys and their function in OneSwarm. While the trusted
users get their keys from those who trust them directly in an
“offline” fashion, untrusted users get their keys from a key
distribution center, that should be online all the time. Using
our design, one may distribute keys to untrusted users based
on activity shared with them—such as an encounter. One even
may consider the scenario of establishing trust based on the
encounters [23]. Other key distribution applications that may
benefit from our design include storage services, file-sharing,
etc.

6.4.2 On-the-fly Name Card Distribution
Consider the scenario of scientific meeting, where some
researchers present their work, some others participate in
discussions on the work, and none has time to keep in touch
and introduce himself to all researchers, due to the time
constraints. Our application can be brought in action for such
scenario for on-the-fly name or business card distribution.
Again, same as the main motivation of our application, people
are good at remembering faces of other encounter people
rather than names, and so it is easy to associate a digital name
card associated with a photo than that of remembering names.

7 CONCLUSION

In this work we show that existing designs for secure
encounter-based social networks fail to fulfill reasonable se-
curity guarantees. We outline several requirements that ideal
encounter-based social networks need to satisfy, and introduce
a generic framework for constructing encounter-based social
networks. We then use our framework to showcase several

designs, and demonstrate that our designs fulfill more require-
ments than SMILE, the design the motivates our work. We
show the feasibility of our work through a demonstration
of MeetUp, an iPhone application that uses our design.
In the future, we will investigate further extensions to the
current framework, alternative designs options, and additional
pluggable components. We will also investigate developing
MeetUp on other mobile platforms as well as a larger-scale
deployment using multiple wireless communication protocols.

ACKNOWLEDGEMENT

We would like to thank Max Schuchard for his valuable
feedback on an earlier version of this work. An earlier version
of this work appeared in [29]. D. Foo Kune is supported in
part by National Science Foundation award CNS-1035715.

REFERENCES
[1] “Android Broadcast Documentation,” http://goo.gl/FTxzV.
[2] A. Acquisti, R. Gross, and F. Stutzman, “Faces of facebook: Privacy in

the age of augmented reality,” in BlackHat, 2011.
[3] “Android development kit,” http://developer.android.com, October 2010.
[4] Apple Inc, “Apple iOS Networking & Internet,” http://developer.apple.

com/technologies/ios/networking.html, October 2010.
[5] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto,

B. Ray, S. Razgulin, K. Sundaresan, B. Surendar, M. Terada, and
R. Han, “Whozthat? evolving an ecosystem for context-aware mobile
social networks,” IEEE Network, vol. 22, no. 4, pp. 50–55, 2008.

[6] Bluetooth, “Bluetooth Specification Version 4.0,” Bluetooth SIG, 2010.
[7] Brightkite, “http://brightkite.com/,” October 2010.
[8] Bump, “iPhone and Android application,” bu.mp/, 10 2010.
[9] C.-H. O. Chen, C.-W. Chen, C. Kuo, Y.-H. Lai, J. M. McCune, A. Studer,

A. Perrig, B.-Y. Yang, and T.-C. Wu, “GAnGS: gather, authenticate ’n
group securely,” in MOBICOM, 2008, pp. 92–103.

[10] R. J. Clark, E. Zasoski, J. Olson, M. H. Ammar, and E. W. Zegura,
“D-book: a mobile social networking application for delay tolerant
networks,” in Challenged Networks, 2008, pp. 113–116.

[11] CMS Wire, “Android dominates burgeoning us smartphone market,”
http://goo.gl/WZ4tZ, August 2012.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile (IETF RFC 5280),” Internet Engineering
Task Force, Request For Comments, 2008.

[13] “COUNCIL REGULATION (EC) No 2252/2004 of 13 December 2004
on standards for security features and biometrics in passports and travel
documents issued by Member States,” Official Journal of the European
Union, December 2004.

[14] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the USENIX Security Sym-
posium, 2004.

[15] J. Douceur, “The sybil attack,” P2P Systems, pp. 251–260, 2002.
[16] N. Eagle and A. Pentland, “Social serendipity: Mobilizing social soft-

ware,” IEEE Pervasive Computing, vol. 4, no. 2, pp. 28–34, 2005.
[17] M. Farb, M. Burman, G. Chandok, J. McCune, and A. Perrig, “Safes-

linger: An easy-to-use and secure approach for human trust establish-
ment,” Carnegie Mellon University, Tech. Rep. CMU-CyLab-11-021,
2011.

[18] C. M. Gartrell, W. C. M. Gartrell, D. S. Mishra, S. Charles M. (m.,
and C. Science, “Socialaware: Context-aware multimedia presentation
via mobile social networks,” 2008.

[19] P. Hancock, A. Burton, and V. Bruce, “Face processing: Human percep-
tion and principal components analysis,” Memory and Cognition, vol. 24,
pp. 26–40, 1996.

[20] T. Isdal, M. Piatek, A. Krishnamurthy, and T. E. Anderson, “Privacy-
preserving P2P data sharing with OneSwarm,” in SIGCOMM, 2010, pp.
111–122.

[21] V. Lenders, E. Koukoumidis, P. Zhang, and M. Martonosi, “Location-
based trust for mobile user-generated content: applications, challenges
and implementations,” in HotMobile ’08: Proceedings of the 9th work-
shop on Mobile computing systems and applications. New York, NY,
USA: ACM, 2008, pp. 60–64.

http://goo.gl/FTxzV
http://developer.android.com
http://developer.apple.com/technologies/ios/networking.html
http://developer.apple.com/technologies/ios/networking.html
http://brightkite.com/
bu.mp/
http://goo.gl/WZ4tZ

TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 8, AUGUST 2013 14

[22] J. Lenhard, K. Loesing, and G. Wirtz, “Performance measurements of
Tor hidden services in low-bandwidth access networks,” in ACNS, ser.
Lecture Notes in Computer Science, M. Abdalla, D. Pointcheval, P.-A.
Fouque, and D. Vergnaud, Eds., vol. 5536, 2009, pp. 324–341.

[23] Y.-H. Lin, A. Studer, H.-C. Hsiao, J. M. McCune, K.-H. Wang,
M. Krohn, P.-L. Lin, A. Perrig, H.-M. Sun, and B.-Y. Yang, “SPATE:
small-group PKI-less authenticated trust establishment,” in MobiSys,
2009, pp. 1–14.

[24] Loopt, “http://loopt.com/,” October 2010.
[25] M. Macy, “Learning to cooperate: Stochastic and tacit collusion in social

exchange,” The American Journal of Sociology, vol. 97, no. 3, pp. 808–
843, 1991.

[26] J. Manweiler, R. Scudellari, Z. Cancio, and L. P. Cox, “We saw
each other on the subway: secure, anonymous proximity-based missed
connections,” in HotMobile ’09: Proceedings of the 10th workshop on
Mobile Computing Systems and Applications. New York, NY, USA:
ACM, 2009, pp. 1–6.

[27] J. Manweiler, R. Scudellari, and L. P. Cox, “SMILE: encounter-based
trust for mobile social services,” in ACM Conference on Computer and
Communications Security, E. Al-Shaer, S. Jha, and A. D. Keromytis,
Eds. ACM, 2009, pp. 246–255.

[28] P. Maymounkov and D. Mazières, “A peer-to-peer information system
based on the XOR metric,” in IPTPS, . I. P. of the 1st International
Workshop on Peer-to Peer Systems (IPTPS02), Ed., 2002.

[29] A. Mohaisen, E. Y. Vasserman, M. Schuchard, D. F. Kune, and Y. Kim,
“Secure encounter-based social networks: requirements, challenges, and
designs,” in ACM Conference on Computer and Communications Se-
curity, E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, Eds. ACM,
2010, pp. 717–719.

[30] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot,
“MobiClique: middleware for mobile social networking,” in WOSN ’09:
Proceedings of the 2nd ACM workshop on Online social networks. New
York, NY, USA: ACM, 2009, pp. 49–54.

[31] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” MIT, Cambridge, MA, USA, Tech. Rep., 1996.

[32] S. Saroiu and A. Wolman, “Enabling new mobile applications with
location proofs,” in HotMobile ’09: Proceedings of the 10th workshop
on Mobile Computing Systems and Applications. New York, NY, USA:
ACM, 2009, pp. 1–6.

[33] A. Studer, T. Passaro, and L. Bauer, “Don’t bump, shake on it: the
exploitation of a popular accelerometer-based smart phone exchange
and its secure replacement,” in ACSAC, R. H. Zakon, J. P. McDermott,
and M. E. Locasto, Eds. ACM, 2011, pp. 333–342.

[34] M. von Arb, M. Bader, M. K. 0002, and R. Wattenhofer, “Veneta:
Serverless friend-of-friend detection in mobile social networking,” in
WiMob, 2008, pp. 184–189.

Abedelaziz Mohaisen obtained his M.S. and
Ph.D. degrees in Computer Science from the
University of Minnesota, both in 2012.

In 2012, he joined Verisign Labs where he
is currently a Research Scientist. Before pur-
suing graduate studies at Minnesota, he was a
Member of Engineering Staff at the Electron-
ics and Telecommunication Research Institute,
a large research and development institute in
South Korea. His research interests are in the
areas of networked systems, systems security,

data privacy, and measurements.

Denis Foo Kune is a visiting scholar at the
University of Michigan where he is focusing on
medical device security. His work includes short-
range electromagnetic compatibility, embedded
devices and cellular networks. He has over a
decade of experience in the industry, mostly at
the Honeywell Labs where he worked on im-
proving wireless protocols, industrial networks,
and represented Honeywell on technical stan-
dard committees. Denis received his MS and
PhD in Computer Science from the University

of Minnesota, and has a B.A. in Computer Science from Macalester
College.

Eugene Vasserman is an Assistant Professor of
Computing and Information Sciences at Kansas
State University. He received his Ph.D. and Mas-
ter’s degrees in Computer Science in 2010 and
2008, respectively, from the University of Min-
nesota. His B.S. in Biochemistry and Neuro-
science is also from the University of Minnesota
(2003). He is interested in distributed network
security, privacy, anonymity, censorship resis-
tance, mobile and pervasive computing, and us-
able security.

Myungsun Kim received the B.S. degree in
computer science and engineering from Sogang
University, Seoul, Korea, in 1994 and the M.S.
degree in computer science and engineering
from the Information and Communications Uni-
versity (ICU), Daejeon, in 2002. He received
the Ph.D. degree in mathematics from Seoul
National University (SNU), Seoul, in 2012. Cur-
rently, he is an assistant professor in Department
of Information Security, University of Suwon. He
was with the Digital Media Research and Devel-

opment Center, Samsung Electronics, until 2008. His research interests
include multiparty computation in cryptography.

Yongdae Kim is a professor in the Department
of Electrical Engineering at KAIST. He received
PhD degree from the computer science depart-
ment at the University of Southern California
under the guidance of Gene Tsudik. Prior to join
KAIST, he was a faculty member in the Depart-
ment of Computer Science and Engineering at
the University of Minnesota - Twin Cities. He
received NSF career award and McKnight Land-
Grant Professorship Award from University of
Minnesota in 2005. Currently, he is serving as a

steering committee member of NDSS (Network and Distributed System
Security Symposium). His current research interests include security
issues in various systems such as cyber physical systems, mobile/ad
hoc/sensor/cellular networks, social networks, storage systems, and
anonymous communication systems.

http://loopt.com/

	Introduction
	Requirements and Challenges
	Security Requirements
	Functional Requirements

	Background and Related Work
	Designs and Design Options
	Functional Components
	On the Need for Strong Authentication
	Trusted Certification

	Design Options
	Immediate Pairing
	Delayed Rendezvous
	Decentralization and Anonymity
	Centralized Design with Anonymity Guarantees

	Implementation and Experiments
	MeetUp: An iPhone Application
	Certification and Visual Authentication
	Wireless Communication

	Using MeetUp
	Effective Range
	Effective Range with Obstacles
	Measurements in Urban Settings
	Tor Hidden Service
	Technical Issues

	Evaluation and Discussion
	Privacy Evaluation
	Privacy in the Encounter Phase
	Privacy in the Post-Encounter Phase
	Privacy Concerns due Visual Authentication

	Overhead and scalability
	Usability Issues
	Additional Applications
	Key Distribution
	On-the-fly Name Card Distribution

	Conclusion
	References
	Biographies
	Abedelaziz Mohaisen
	Denis Foo Kune
	Eugene Vasserman
	Myungsun Kim
	Yongdae Kim

