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Abstract. Security incidents and data breaches are increasing rapidly, and only
a fraction of them is being reported. Public vulnerability databases, e.g., national
vulnerability database (NVD) and common vulnerability and exposure (CVE),
have been leading the effort in documenting vulnerabilities and sharing them
to aid defenses. Both are known for many issues, including brief vulnerability
descriptions. In this paper, we devise a pipeline to augment vulnerability de-
scription through third party reference (hyperlink) scrapping. To normalize the
description, we build a natural language summarization pipeline utilizing a pre-
trained language model that is fine-tuned using labeled instances and evaluate
its performance against both human evaluation (golden standard) and computa-
tional metrics, showing initial promising results in terms of summary fluency,
completeness, correctness, and understanding.

Keywords: Vulnerability · NVD · CVE · Natural Language Processing · Sum-
marization · Sentence Encoder · Transformer.

1 Introduction

Vulnerabilities are weaknesses in systems that render them exposed to any threat or
exploitation. They are prevalent in software and are constantly being discovered and
patched. However, given the rapid development in technologies, discovering a vulnera-
bility and developing a mitigation technique become challenging. Moreover, document-
ing vulnerabilities and keeping track of their development become cumbersome.

The common vulnerability and exposure CVE managed by MITRE and the Na-
tional vulnerability database NVD managed by NIST are two key resources for report-
ing and sharing vulnerabilities. The content of each resource may differ slightly accord-
ing to [6], but they are mostly synchronized and any update to the CVE should appear
eventually in the NVD. However, NVD/CVE descriptions have several shortcomings.
For example, the description might be incomplete, outdated or even contain inaccurate
information which could delay the development and deployment of patches. In 2017
Risk Based Security also known as VulbDB reported 7,900 more vulnerabilities than
what was reported by CVE [7,8]. Another concern with the existing framework is that
the description provided for vulnerabilities is often incomplete, brief, or does not carry
sufficient contextual information [3,?].

To address some of these gaps, this work focuses on the linguistic aspects of vul-
nerability description and attempts to improve them by formulating the problem as a
summarization task over augmented initial description. We exploit the existence of third
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party reports associated with vulnerabilities, which include more detailed information
about the vulnerabilities that goes beyond the basic description in the CVE. Therefore,
we leverage these additional resources employing a natural language processing (NLP)
pipeline towards that goal, providing informative summaries that cover more details and
perform well on both computational and human metrics.
Contributions. The main contributions of this work are as follows. (1) we present a
pipeline that enriches the description of vulnerabilities by considering semantically
similar contents from various third party resources (reference URLs). (2) In order to
normalize the enriched description and alleviate some of the drawbacks of the augmen-
tation (e.g., redundancy and repetition, largely variable length of description), we build
an NLP pipeline that exploits advances in representation, pretrained language models
that are fine-tuned using the original (short description) as a label, and generate se-
mantically similar summaries of vulnerabilities. (3) We evaluate the performance of the
proposed NLP pipeline on NVD, a popular vulnerability database, with both computa-
tional and human metric evaluations.

2 Related Work

Limited prior works studied different characteristics of vulnerabilities and used NLP
based on the task, although NLP has been utilized extensively for other security and pri-
vacy applications [1,2]. Dong et al. [6] built a system to capture inconsistency between
CVE/NVD and third party reports utilizing named entity recognition model (NER) and
a relation extractor model (RE). Other research focused on studying the relationship
between CVE and Common Attack Pattern Enumeration and Classification (CAPEC)
and if it is possible to trace CVE to a particular CAPEC using NLP as in Kanakogi et
al. [10]. Similarly, Kanakogi et al. [9] tested a new method for the same task but using
Doc2Vec. Wareus and Hell [18] proposed a method to automatically assigns Common
Platform Enumeration (CPE) to a CVEs from their description using NLP.
This work. we propose a pipeline for enriching the vulnerability description, and a
pipeline for normalizing description through summarization and associated evaluation.

3 Dataset: Baseline and Data Augmentation

Data Source and Scraping. Our data source is NVD because it is a well-known stan-
dard accepted across the globe, in both industry and academia, with many strengths: (1)
detailed structured information, including the severity score and publication date, (2)
human-readable descriptions, (3) capabilities for reanalysis with updated information,
and (4) powerful API for vulnerability information retrieval.

In our data collection, we limit our timeframe to vulnerabilities reported between
2019 and 2021 (inclusive). Based on our analysis, CVEs reported before 2019 do not
include sufficient hyperlinks with additional text, which is our main source for aug-
mentation. We list all the vulnerabilities reported in this period, and scrap them. For
each vulnerability, we scrap the URLs pointing to the NVD page that hosts a particu-
lar vulnerability. As a result, we obtain 35,657 vulnerabilities with their unique URLs.
Second, we iterate through every URL various data elements. After retrieving the URL,
we scrap the description and the hyperlinks for that vulnerability.
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Fig. 1. Data collection pipeline

Description Augmentation. To augment the description, we iterate through the scrapped
hyperlinks. Each hyperlink directs us to a page hosted by a third party, which could be
an official page belonging to the vendor or the developer or an unofficial page; e.g.,
GitHub issue tracking page. We scrape every paragraph tag in each page separately and
apply various preprocessing steps to the extracted paragraph to clean up the text. This
preprocessing includes removing web links, special characters, white redundant spaces,
phone numbers, and email addresses. We also check the length of the paragraph and en-
sure it is more than 20 words after preprocessing. We conjecture that paragraphs shorter
than 20 words will not contribute to our goal.

After cleaning the text and verifying the length, we use a sentence encoder to en-
code the semantic for the extracted paragraph and the scrapped description into low
dimensional vector representations (more in §4.1). To determine the similarity between
the vectorized representations, we use the cosine similarity which yields a value be-
tween -1 and 1. For example, let the vector representation of the extracted paragraph be
vp and that of the description be vd, the cosine similarity is defined as: cos(vp,vd) =

#»vp· #»vd
|| #»vp|| || #»vd|| . If cos(vp,vd) exceeds a predefined threshold, we add/augment the para-
graph as the input text and the description as the summary text. This process is repeated
with every paragraph contained within a page. We repeat this step for every hyperlink
by extracting the page, associated paragraph tags, applying preprocessing, encoding
semantic and measure the similarity with the description. We note that some vulner-
abilities may not be added to our dataset; e.g., if the vulnerability did not have any
hyperlinks or if its associated hyperlinks did not include any paragraph that meets the
predefined threshold. We repeat the process for each URL until we cover all the URLs,
upon which dataset is ready to be presented to the model.

Figure 1 shows our pipeline. The choice of a sentence encoder will affect the dataset
because the inclusion of a paragraph is based on the similarity score between the vector-
ized representation of the description and paragraph encoded by the sentence encoder.
To enhance our experiments and provide a better insight into different encoders and
summarization models, we use two sentence encoder choices: Universal Sentence En-
coder (USE) and MPNet sentence encoder. In our analysis, we use the best performing
encoder with respect to the end-goal outcome of our summarization task.

Per Figure 1, the similarity score must exceed a predefined threshold. From our pre-
liminary assessment of the two encoders, we found that USE is more accurate (sensi-
tive) than MPNet in terms of the similarity score representation, meaning that when the
description and the paragraph are (semantically) similar to one another, USE produces
a higher score than MPNet and vice versa. Considering this insight, we set different
threshold for each encoder. Namely, we set the similarity score for USE to be between
0.60 and 0.90, since the encoder is accurate. On the other hand, since MPNet is less ac-
curate (sensitive) than USE, we enforce a more restrictive threshold and set it between
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0.70 and 0.90. We excluded paragraphs with a similarity score above 0.90 because we
found those paragraphs to be almost identical to the description, thus adding them would
not serve the main purpose of enriching the description. Those values were picked as
part of our assessment over the two encoders using a small set of vulnerabilities and
following the procedure explained above.

Some hyperlinks analysis took extremely long time. Upon examining the content
of those pages, we found that they contain a history of the software vulnerability with
updates, e.g., over 20,000 paragraph tags in some cases. Moreover, most of them were
not considered by the sentence encoder because they do not meet the threshold. As such,
we consider the first 100 paragraph tag in each hyperlink to speed up the process. We
justify this heuristic by noting that most pages contain the related textual information
at the beginning with subsequent paragraphs being reiteration of information that is
already mentioned earlier. Finally, to only limit our collection to authentic descriptions,
we consider hyperlinks with valid SSL certificate.

Additionally, we curated a third dataset using both and enforcing multiple thresh-
olds on the similarity criterion. For that, we used the same the threshold for the MPNet
as before, and relaxed the threshold for USE to 0.50 to relax an imposed restrictive
setting by possibly excluding otherwise qualified candidate paragraphs.

# CVEs Encoders Vuln.

35,657
USE 9,955
MPNet 8,664
Both 10,766

Table 1. Datasets

Given the differences between the two encoders, we
consider a paragraph to be similar if the difference be-
tween the two similarity scores is at most 0.20; otherwise
we consider them dissimilar and discard the paragraph.
Here, we favored the consistency between the two encod-
ing techniques to conceptually alleviate the discrepancy
presented from using the two different encoders. Table 1
shows the datasets. In the next section, we elaborate about the encoders in more detail.

4 Methodology and Building Blocks

4.1 Sentence Encoders

Among the multiple tried encoders over multiple CVEs along with their similar para-
graphs, we found that the best encoders for our task are the universal sentence encoder
(USE) [4] and MPNet sentence encoder [16], which we explain in the following.
Universal Sentence Encoder. Two architectures are proposed for USE. The first is
a transformer-based model which uses a transformer architecture to compute context
aware representation of the words while preserving words’ positions, followed by em-
beddings used to compute fixed length sentence encoding using element-wise sum at
each word position. The downside of this architecture is its time and space complexi-
ties, i.e., it takes O(n2) and is proportional in space to the sentence length. The second
architecture is much simpler and uses a deep averaging network (DAN). It computes
a sentence initial embedding by averaging words with bi-gram embeddings and passes
this embedding through a feed forward network to produce the final embedding. Unlike
the transformer architecture, DAN’s time complexity is O(n) and its space is constant
with respect to the length of the sentence. The trade-off in choosing among those two
architectures is between the high accuracy with intensive computation achieved by the
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transformer architecture versus the efficient inference and computation with a reduced
accuracy achieved by the DAN architecture. Given our problem’s characteristics, we
decided to use the DAN architecture because (1) our data will be scraped, and its length
may vary widely, and (2) our data is domain-specific and is limited in its linguistic
scope. We conjecture DAN will produce accurate embedding since the vocabulary size
is limited (i.e., small). Finally, considering that we have over 35,000 Vulnerabilities,
where each has multiple hyperlinks to be scraped, the scalability benefit of DAN out-
weighs the high accuracy of the transformer-based architecture.
MPNet. The second technique we utilize is MPNet. MPNet is a model that leverages
the advantages presented in two famous pretrained models: BERT [5] and XLNET [19].
BERT uses a masked language modeling objective, which masks 15% of the tokens and
the model is trained to predict them. The downside of BERT is that it does not con-
sider the dependency between the masked tokens. On the other hand, XLNET retains
the autoregressive modeling by presenting permuted language modeling objective in
which each token within a sequence considers the permutations of the previous tokens
in the sequence but not after it. However, this causes position discrepancy between the
pretraining and fine-tuning. MPNet unifies the objectives of the two models by consid-
ering dependency among predicted tokens and considering all tokens’ positions to solve
the position discrepancy. Moreover, MPNet sentence transformer is built by fine-tuning
MPNet on 1 billion sentence-pair dataset and uses contrastive learning objective. Given
a sentence from the pair, the model tries to predict which other sentence it was paired
with. This is done by computing the cosine similarity with every other sentence in the
batch and then using the cross-entropy loss with respect to the true pair. In the next
section we explain the pipeline for our summarization models.

4.2 Pretrained Models

The goal of this work is to use pretrained models and fine-tune them on our datasets for
vulnerability summarization and description enrichment. The pretrained models inherit
the architecture of the original transformer [17] with some adjustments to the weights
depending on the task it is performing. The transformer itself constitutes of two major
components: an encoder and a decoder. The encoder’s role is to build a representa-
tion for the input sequence that captures the dependencies between tokens in parallel
without losing positional information of those tokens. The transformer relies on the
attention mechanism to capture interdependency within a sequence, which provides a
context-aware representation for each token. The decoder’s role is to use the built rep-
resentation and map it to a probability distribution over the entire vocabulary to predict
the next word. Figure 2 shows the pipeline of a the encoder-decoder transformer from
the beginning of inputting the raw text to the prediction (decoded into utterances for
sequences generation; i.e., summarization).

The original transformer was developed and is intended for machine translation,
although generalized to other tasks with remarkable results. We note that most mod-
ern pretrained models use a transformer architecture that depends on an encoder only;
e.g., BERT [5], a decoder only; e.g., GPT (Generative Pre-trained Transformer) [13],
or both. Each architecture has its own advantages, which allows it to excel in specific
tasks. The summarization task, for example, can be modeled as a seq2seq task where
the model takes an input (long text) and outputs the summary, which naturally makes a
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Fig. 2. Our summarization pipeline

model that constitutes of encoder and decoder ideal for its design. In the NLP literature,
the most performant models for summarization are BART [12], T5 [14], and Pegasus
[20], with BART and T5 being more widely used. BART is a denoising autoencoder
for pretraining seq2seq with an encoder-decoder architecture. The idea of BART is to
use a noising function to corrupt the text and train the model to reconstruct the origi-
nal (uncorrupted) text. In contrast, T5 uses a masked language modelling objective like
BERT for training. Instead of masking a token, T5 masks a span of the original text
as its corruption strategy. The length of the span does not influence the model perfor-
mance unless too many tokens are within that span. Moreover, T5 attempts to define
a framework for many NLP tasks by adding a prefix that identifies the task it tries to
learn. Therefore, one model can support multiple tasks by defining those prefixes in the
training data and adding those prefixes to a sample allows the model to predict for the
task associated with that prefix.

4.3 Pipeline

Next, we discuss the pipeline depicted in 2 in more details. The major steps of our
pipeline are tokenization of the input text sequence (description), encoding, token em-
bedding, positional embedding, encoding-decoding (utilizing a fine-tuned pretrained
language model), and prediction. Those steps are elaborated in the following.
Tokenization. The first step for most models is tokenization, which includes breaking
text into individual independent entities and encoding them into numerical representa-
tion. Tokenization could be applied at the word or character level. With word tokeniza-
tion, we will end up with a large vocabulary size that will affect the dimensionality of
the word embedding. To address the dimensionality issue, it is common to limit the
size to the most common 100,000 words in a corpus and encode all unknown words
as <UNK>. However, most words morphemes will be encoded as unknown although
they possess very similar meaning to their root. Similarly, character embedding dom-
inant limitation is losing the linguistic structure and considering a text as a stream of
characters. A third type is the subword tokenization, which alleviates the drawbacks
of the two aforementioned tokenization granularities. Subword tokenization splits rare
words into a meaningful unit which helps the model to handle complex words and as-
sociate their embedding with similar words. This allows the model to associate singular
with plural and relate different morphemes to their root. BART uses Byte-Pair Encoding
(BPE) [15] and T5 uses SentencePiece [11] which are both subword tokenizer.
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Token Encoding. The tokenized text is transformed into numerical representation using
one-hot encoding with a size equal to the vocabulary size; e.g., 20k-200k tokens.
Token Embedding. The token encodings are then projected into lower dimensional
space that captures the characteristics of each word in a token embedding. However, for
a pretrained model this and the previous step are already done and the token embedding
is already computed during the model training. Those two steps are required if we
plan to build our own transformer from the bottom-up. In practice, each token will
be represented by an id that identifies it with respect to the model.

Each text consists of tokenized words and each token is represented by an input id.
To increase the efficiency of the model, we create a batch of multiple text before feeding
the text into the transformer. However, to create a batch, we must ensure that all texts
have the same size as the longest text in that batch. For that padding is used to pad short
text to meet the length requirements by adding id ‘0’ to the text sequence. Moreover, the
attention mask informs the model to ignore those padding during encoding by assigning
1 to tokens that are part of the original sequence and 0 for padding. Finally, the batch of
texts (with attention masks) is passed to the transformer block. Each model has some
reserved ids that are used for a specific purpose.
Positional Embedding. The transformer uses the attention mechanism to capture the
contextual interdependence between words. However, this method is oblivious to the
words’ positions, and we need a way to inject this information into the word embed-
ding. As with tokenizer, each model has its own way of including this information.
BART uses the same method used in the original transformer where a simple sinusoidal
function is used to create a positional embedding for each token within a sequence. On
the other hand, T5 uses a more sophisticated approach, called the relative positional
encoding (RPE), which uses a multi-headed attention to encode the relative positions
between tokens. The intuition behind RPE stems from the fact that what is most impor-
tant is the surrounding words rather than its exact position, and that is how RPE com-
putes the positional embedding. The token embedding, and the positional embedding
are added together to build the final embedding that will be fed into the transformer.
Transformer. This step consists of an encoder an a decoder. The encoder uses a multi-
headed attention to build a representation that captures the contextual interdependence
relationship between tokens. The encoder uses several layers of self-attention to com-
pute how much attention should be paid by every token with respect to other tokens to
build the final numerical representation. Modern transformers use the scaled dot product
attention which utilizes a query, key, and value computed for each token to produce the
attention score for every token with respect to other tokens in the sequence. A simple
intuition behind applying several attention layers (heads) is that each head may focus
on one aspect of attention, while others may capture a different similarity. By concate-
nating the output of all heads, however, we obtain a more powerful representation that
resembles that sequence. The feed forward network receives every token embedding
from the multi-headed attention and processes it independently to produce its final em-
bedding which is referred to as the hidden states.

As the encoder outputs a representation of the input sequence, the decoder’s objec-
tive is to leverage the hidden states to generate the target words. We note that summa-
rization requires text generation to generate the next token in an autoregressive fashion.
As such, the generation procedure’s objective is to predict the next token given the
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previous tokens. This can be achieved using the chain rule to factorize the conditional
probabilities as P (x(t+1)|x(t), ..., x(1)) =

∏T
t=1 P (x(t+1)|x(t), ..., x(1))

A numerical instability results from the product of the multiple probabilities as they
become smaller. Thus, it is common to use the log of the conditional probability to
obtain a sum, as log(P (x(t+1)|x(t), ..., x(1))) =

∑T
t=1 log(P (x(t+1)|x(t), ..., x(1))).

From this objective, there are various methods to select the next token through de-
coding with two aspects to consider. (1) The decoding method is done iteratively, where
the next token is chosen based on the sequence at each time step. (2) It is important to
emphasize certain characteristics of the selected word; e.g., in summarization we care
about the quality of the decoded sequence, compared to storytelling or open domain
conversation where care more about the diversity when generating the next token.
Decoding. In this work, the beam search is used as decoder, since summarization em-
phasizes factual or real information in the text. This method is parameterized by the
number of beams, which defines the number of the most probable next tokens to be
considered in the generated sequence and keep track of the associated sequences by ex-
tending a partial hypothesis to include the next set of probable tokens to be appended to
the sequence until it reaches the end of sequence. The sequences are then ranked based
on their log probabilities, and the sequence with the highest probability is chosen. It
is important to ensure that at each time step, the decoder is conditioned on the current
token and the past output only. This step is crucial to assure the model does not cheat
by accessing future tokens. While the transformer architecture is task-independent, the
classification head is task-specific, and we use a linear layer that produces a logit fol-
lowed by a softmax layer to produce a probability distribution for decoding.
Operational Considerations. Transformers are typically deployed in one of two set-
ting. (1) As a feature extractor, where we compute the hidden states for each word
embedding, the model parameters are frozen, and we only train the classification head
on our task. Training using this method is fast and suitable in the absence of resources
to fine tune the whole model. (2) As a fine-tuning setting, where all the model trainable
parameters are fine-tuned for our task. This setting requires time and computational re-
sources depending on the model size. In our case we use BART and T5 for fine-tuning
and since BART has a smaller number of parameters, its fine-tuning is faster.

5 Evaluations

Statistical Analysis. After assembling the three datasets, we picked the dataset pro-
duced by both encoders, given that it is the largest, for statistical analysis (the results
with other datasets are omitted for the lack of space). The goal of this analysis is to
obtain a better insight over the dataset language characteristics. From this analysis, we
found the number of tokens of most augmented descriptions falls below 1000 tokens, in
contrast to the original summary which is below 200 tokens for the majority of vulnera-
bilities. Therefore, we set the threshold for the augmented description and the summary
to be 1000 and 250 tokens, respectively, in our pipeline.

We collect the word, character, and sentence count of the augmented and original
summary and found a significant difference between them (e.g., (mean, standard de-
viation) for word, character, and sentence in both cases are: (48, 2086) vs (49, 31),
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(2939, 12370) vs (279, 186), and (43, 184) vs (7, 5.32). This highlights the need for a
summarization to normalize the augmented description.

Next, we perform named entity recognition to understand which entities were pre-
sented across the summary because this is our target in the dataset. We found the fol-
lowing frequent named entities: (XSS, 799), (N/AC 523), (IBM X-Force ID, 463), (N/S,
343), (Cisco, 336), (SQL, 334), (Server, 315), (JavaScript, 267), (WordPress, 264),
(Jenkins, 240), (IBM, 237), (Firefox, 200), (Java, 187), (VirtualBox, 174), (PHP, 164),
(Java SE, 150), and (Android, 148). The common names include organizations, e.g.,
Cisco and IBM, technologies, e.g., JavaScript, and PHP, or vulnerabilities, e.g., XSS.

We further analyze the most frequent trigram across the dataset. We found that the
description trigrams are meaningful, and form the basis for a good summary, in contrast
to the augmented text trigrams that, in general, do not present useful information and
appear to be uninformative. This might be a result of augmenting repeated content,
which highlights certain trigrams based on the frequency. Those initial results highlight
the need for an additional summarization step.

Experimental Settings. We fine-tune both models using two different settings. First,
We split the dataset with %10 reserved for testing. Then, we split the training set with
%10 reserved for validation. Second, based on our preliminary analysis, we set 1000
and 250 tokens as the maximum lengths for augmented descriptions and new summary.

Model R P F1 T b B

BART

0.51 0.50 0.49 1000 2 8
0.51 0.46 0.47 1000 5 8
0.52 0.52 0.51 500 2 8
0.53 0.50 0.50 500 5 8
0.50 0.51 0.49 500 2 4
0.51 0.49 0.49 500 5 4

T5

0.46 0.50 0.47 500 2 8
0.47 0.49 0.47 500 5 8
0.47 0.52 0.48 500 2 4
0.47 0.50 0.47 500 5 4

Table 2. Results after fine-tuning the models using different
hyperparameters (Recall, Precision, b=number of beams,
T=text maximum limit, B=batch size)

Finally, We set the batch size
to 8 and the learning rate to
0.0001 based on various pa-
rameters (results omitted for
the lack of space). We use
beam search as our decoding
method, with a beam size of 2.
We also fix several parameters:
length penalty to 8 (which en-
courages the model to produce
longer summary if it is set to
a value higher than 1), and the
repetition penalty to 2 (which
instructs the model whether to
use words that have already been generated or not). Those values are chosen among
various values for their best performance, as demonstrated in Table 2. As we stated ear-
lier, we did extensive experimentation on the mixed dataset that uses both encoders and
based on its result we experimented with other datasets.

Computational Metrics and Results. ROUGE measures the matching n-gram between
the prediction and the target. For our evaluation, we use ROUGE-1, which measures
the overlapping unigram, and gives an approximation of the overlap based on individ-
ual words. For ROGUE, we use three sub-metrics: recall, precision, and F1 score. The
recall measures the number of matching n-gram between our generated summary and
the target summary, normalized by the number of words in the target summary. In con-
trast, the precision normalizes that quantity by the number of words in the generated
summary. Finally, F1 score is expressed as: F1−Score = 2× precision×recall

precision+recall .
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Model Tℓ Vℓ B

BART 0.42 0.46 8
0.32 0.46 4

T5 1.96 1.48 8
2.35 1.46 4

Table 3. Models training Tℓ

and validation loss Vℓ over
different batch sizes (B)

Table 2 shows the ROUGE scores after fine-tuning
BART and T5. Multiple experiments have been conducted
using different batch sizes, text limit, and number of beams.
As we can see in Table 2, when the text limit has shrunk
to 500 tokens for the augmented text, all metrics have im-
proved. We also can see that most metrics achieved better
score with a smaller number of beams. This is explained by
the beam search decoding, as we increase the number of sequences by having a high
number of beams, the risk introduced by considering the wrong sequence increases.

We tested BART with a batch size of 4 and with 500 tokens as the augmented
description limit and it outperformed the model trained with 1000 as text limit. It is
important to notice that as the number of beams increases, the time it takes the model
to generate the summary increases. Considering our initial results from BART and the
resources demand for T5 as it is much larger, we decided to train it on text limited to
500 tokens. However, the results did not align with BART. For example, we found that
batch size of 4 did better than 8 across all three metrics for T5. Moreover, we see that
increasing the number of beams did not help. We point out, however, that the validation
loss varies between the two models as shown in the Table 3. This shows that BART did
better than T5 during training, which is why BART achieved better scores.
Summary comparison We compare the target summary with the model generated sum-
mary using the same sentence encoders. We encode both summaries (original and new)
using both encoders and measure the similarity between the target and the prediction.
We found that most predictions are very close to the target with the mean of the distri-
bution around a similarity of 0.75 (the figures are omitted for the lack of space).

We report the computational metrics in Table 4. Although the mixed dataset had
more instances, the models trained on the separate datasets outperformed it. This could
be attributed to the restriction we relaxed for the USE encoder, which allows the pipeline
to include more paragraphs. Moreover, since the two encoders use different architec-
tures, using them together may have a negative effect on the curated dataset. More
experimentation might be needed to find the perfect threshold to use them both.

Model Encoder R P F1 b B

BART USE 0.61 0.60 0.59 2 8
MPNet 0.55 0.57 0.55 2 8

T5 USE 0.58 0.62 0.59 2 4
MPNet 0.53 0.59 0.54 2 4

Table 4. Results after fine-tuning the
models using different single encoder
(Precision, Recall, b=beams, B=batch)

The models trained using USE dataset
outperformed the MPNet dataset. While the
USE dataset is larger, we believe the results
are better due to USE’s accuracy in encod-
ing text semantic. It also prove that USE pro-
duces a reliable representation for long text.
We reiterate here that we used the DAN ar-
chitecture for USE which is less accurate than
the transformer architecture as we explained
in section 4.1. Therefore, using the transformer architecture to build the dataset could
generate a more accurate dataset that is likely to outperform the result in Table 4.
Human Metrics Results. We consider four human metrics: fluency, correctness, com-
pleteness, and understanding. All human metrics are graded on a scale between 1-3 in
which 3 is the best grade and 1 is the worse in terms of the metric definition.

Fluency measures the grammatical structure of the prediction and how coherent the
semantics of the generated summary. The correctness measures how accurate the model
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prediction is in terms of capturing the correct vulnerability details. The completeness
measures how complete is the generated summary with respect to details in the original
summary. The understanding measures how easy it is to understand the generated sum-
mary. The human evaluation on the generated summary from both models is done over
100 randomly selected samples where the average is reported in Table 5. After analyzing
both models we observed similar behaviors.

Model F Cm Cr U
BART 2.69 2.15 2.16 2.58
T5 2.72 2.07 2.04 2.57

Table 5. Human evaluation:
Fluency, Completeness,
Correctness, and
Understanding

We found that both models produce a fluent summary
with very few exceptions. Similarly, the generated sum-
maries are mostly easy to follow and understand. How-
ever, in some cases when the generated summaries are
short, they do not convey much meaning and it becomes
hard to understand the summaries. In contrast, complete-
ness and correctness suffered with both models. We did
not anticipate the models to perform well across those
metrics because the dataset was not curated for detecting such features. Moreover, the
dataset is imbalanced with respect to its features in terms of augmented text length
which we believe is the main reason for both models in missing those two metrics.
However, when the augmented text is of certain length, those two metrics achieve good
results. The human evaluation metrics are averaged and shown in table 5. We can see
that both models are comparable in terms of human metrics when their generated sum-
mary is compared against the corresponding target.
Qualitative Results. Both models experienced unpredictable behaviors by repeating
some sentences multiple times, or by adding unrelated software to the prediction. Both
models also tend to be extractive when the augmented text is of a certain length. For
instance, if the text is short (20 words), both models will tend to make up summriza-
tion that was learned during training by including vulnerability description such as gain
access or code execution, even when none of these were mentioned in augmented text.
On the other hand, when the augmented description is too long, the prediction becomes
repetitive and hard to understand, although it still covers different portions of the target
summary. One possible solution is to ensure a diversity among the augmented sentences
and that no sentence is repeated. However, this could be expensive, as it requires check-
ing every new candidate paragraph against all already augmented paragraphs.

6 Conclusion

We leverage publicly available resources to enhance and enrich vulnerabilities. Our
method relies on public databases for collection of text data and pass them through
multiple filters to extract relevant text that could contribute to our dataset. We fine-
tune two pretrained models that excel in summrization tasks using our curated dataset
and report initial and promising result using computational and human metrics. Data
curation is a future direction for improving accuracy.
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policy annotation with information highlighting made practical using deep representations.



12 Hattan Althebeiti and David Mohaisen

In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 2378–2380 (2021)

2. Alabduljabbar, A., Mohaisen, D.: Measuring the privacy dimension of free content websites
through automated privacy policy analysis and annotation. In: Companion Proceedings of
the Web Conference (2022)

3. Anwar, A., Abusnaina, A., Chen, S., Li, F., Mohaisen, D.: Cleaning the NVD: comprehensive
quality assessment, improvements, and analyses. CoRR abs/2006.15074 (2020), https:
//arxiv.org/abs/2006.15074

4. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N., Guajardo-
Cespedes, M., Yuan, S., Tar, C., et al.: Universal sentence encoder. arXiv preprint
arXiv:1803.11175 (2018)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics (2018)

6. Dong, Y., Guo, W., Chen, Y., Xing, X., Zhang, Y., Wang, G.: Towards the detection of incon-
sistencies in public security vulnerability reports. In: 28th USENIX Security Symposium.
pp. 869–885 (2019)

7. Help Net Security: Still relying solely on cve and nvd for vulnerability track-
ing? bad idea. https://www.helpnetsecurity.com/2018/02/16/
cve-nvd-vulnerability-tracking/ (August 2018)

8. Information Security Buzz: Why critical vulnerabilities do not get re-
ported in the cve/nvd databases and how organisations can mitigate
the risks. https://informationsecuritybuzz.com/articles/
why-critical-vulnerabilities/ (August 2018)

9. Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo, T., Kato, T., Kanuka, H.,
Hazeyama, A., Yoshioka, N.: Tracing capec attack patterns from cve vulnerability informa-
tion using natural language processing technique. In: 54th Hawaii International Conference
on System Sciences (2021)

10. Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo, T., Kato, T., Kanuka, H.,
Hazeyama, A., Yoshioka, N.: Tracing cve vulnerability information to capec attack patterns
using natural language processing techniques. Information 12(8), 298 (2021)

11. Kudo, T., Richardson, J.: Sentencepiece: A simple and language independent subword tok-
enizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226 (2018)

12. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V.,
Zettlemoyer, L.: Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

13. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training. OpenAI (2018)

14. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683 (2019)

15. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword
units. In: 54th Annual Meeting of the Association for Computational Linguistics (2015)

16. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: Mpnet: Masked and permuted pre-training for
language understanding. Advances in Neural Information Processing Systems 33, 16857–
16867 (2020)

17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. Advances in neural information processing systems
30 (2017)
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